ICS 65. 100. 20 G 25

团 体 标准

T/CCPIA 044-2020

丙炔氟草胺原药

Flumioxazin technical material

2020-02-25 发布 2020-02-25 实施

中国农药工业协会 发布

前 言

本标准按照 GB/T 1.1-2009 给出的规则起草。

请注意本文件的某些内容可能涉及专利。本文件的发布机构不承担识别这些专利的责任。

本标准由中国农药工业协会提出。

本标准由中国农药工业协会归口。

本标准起草单位:利尔化学股份有限公司、上虞颖泰精细化工有限公司、湖南化工研究院有限公司。

本标准主要起草人: 傅黎、胡礼、张萍、李聪、刘惠华、刘丽红、孙久社、张桂婷。

CCPIA

丙炔氟草胺原药

1 范围

本标准规定了丙炔氟草胺原药的要求、试验方法、验收和质量保证期以及标志、标签、包装、储运。 本标准适用于由丙炔氟草胺及其生产中产生的杂质组成的丙炔氟草胺原药。

注: 丙炔氟草胺的其他名称、结构式和基本物化参数参见附录A。

2 规范性引用文件

下列文件对于本文件的应用是必不可少的。凡是注日期的引用文件,仅注日期的版本适用于本文件。 凡是不注日期的引用文件,其最新版本(包括所有的修改单)适用于本文件。

- GB/T 1600-2001 农药水分测定方法
- GB/T 1601 农药 pH 值的测定方法
- GB/T 1604 商品农药验收规则
- GB/T 1605—2001 商品农药采样方法
- GB 3796 农药包装通则
- GB/T 6682-2008 分析实验室用水规格和试验方法
- GB/T 8170—2008 数值修约规则与极限数值的表示和判定

3 要求

3.1 外观

应为类白色至淡黄色粉末, 无可见的外来杂质。

3.2 技术指标

丙炔氟草胺原药应符合表1要求。

项 目		指 标
丙炔氟草胺质量分数/%		99. 2
水分/%	\leq	0. 3
pH 范围		4.0~7.0
二氯甲烷不溶物 a/%	\	0.2
^a 正常生产时,二氯甲烷不溶物 ⁴	每3个月至少测定一次	次。

表1 丙炔氟草胺原药控制项目指标

4 试验方法

安全提示:使用本标准的人员应有实验室工作的实践经验。本标准并未指出所有的安全问题。使用者有责任采取适当的安全和健康措施,并保证符合国家有关法规的规定。

4.1 一般规定

本标准所用试剂和水,在没有注明其他要求时,均指分析纯试剂和 GB/T 6682—2008 中规定的三级水。检验结果的判定按 GB/T 8170—2008 中 4. 3. 3 进行。

4.2 抽样

按 GB/T 1605—2001 中的 5. 3. 1 方法进行。用随机数表法确定抽样的包装件;最终抽样量应不少于 100 g。

4.3 鉴别试验

红外光谱法——试样与标样在 $4000 \text{ cm}^{-1} \sim 400 \text{ cm}^{-1}$ 范围内的红外吸收光谱图应无明显差异,丙炔氟草胺标样的红外光谱图见图 1。

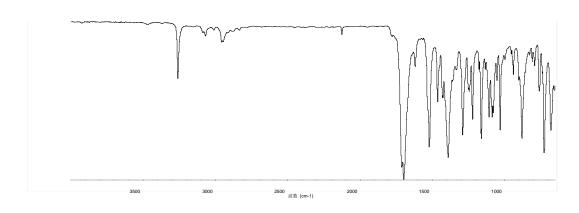


图1 丙炔氟草胺标样红外光谱图

高效液相色谱法——本鉴别试验可与丙炔氟草胺质量分数的测定同时进行。在相同的色谱操作条件下,试样溶液中某色谱峰的保留时间与标样溶液中丙炔氟草胺色谱峰的保留时间,其相对差值应在1.5%以内。

4.4 丙炔氟草胺质量分数的测定

4.4.1 方法提要

试样用乙腈溶解,以乙腈+水为流动相,使用以 C₁₈为填料的不锈钢柱和紫外检测器,在波长 288 nm下对试样中的丙炔氟草胺进行反相高效液相色谱分离,外标法定量。

4.4.2 试剂和溶液

乙腈:色谱纯。

水:新蒸二次蒸馏水或超纯水。

丙炔氟草胺标样:已知质量分数, ω≥99.5%。

4.4.3 仪器

高效液相色谱仪:具有紫外检测器。

色谱数据处理机或色谱工作站。

色谱柱: 250 mm×4.6 mm (i.d.) 不锈钢柱, 内装 C₁₈、5 μm 填充物 (或同等效果的色谱柱)。

过滤器:滤膜孔径约 0.45 μm。

微量进样器: 50 μL。

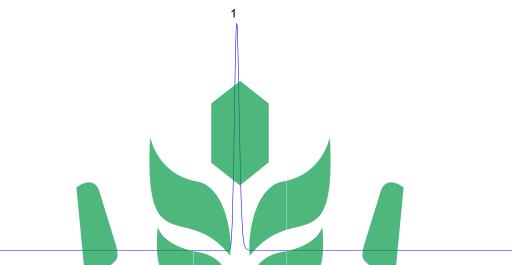
定量进样管: 10 μL。

超声波清洗器。

4.4.4 高效液相色谱操作条件

流动相: ψ (乙腈: 水) $\neq 50$: 50, 经滤膜过滤, 并进行脱气

流量: 1.0 mL/min。


柱温: 40℃。

检测波长: 288 nm。

进样体积: 10 μL。

保留时间: 丙炔氟草胺约 10.2 min。

上述操作参数是典型的,可根据不同仪器特点对给定的操作参数作适当调整,以期获得最佳效果。 典型的丙炔氟草胺原药高效液相色谱图见图 2。

说明:

1——丙炔氟草胺。

图2 丙炔氟草胺原药的高效液相色谱图

4.4.5 测定步骤

4. 4. 5. 1 标样溶液的制备

称取 0.05 g (精确至 0.000 1 g) 丙炔氟草胺标样于 100 mL 容量瓶中,用乙腈溶解并稀释至刻度,摇匀。

4.4.5.2 试样溶液的制备

称取含 0.05 g (精确至 0.000 1 g) 丙炔氟草胺的试样于 100 mL 容量瓶中,用乙腈溶解并稀释至 刻度,摇匀。

4.4.5.3 测定

在上述操作条件下,待仪器稳定后,连续注入数针标样溶液,直至相邻两针丙炔氟草胺峰面积相对变化小于1.2%后,按照标样溶液、试样溶液、试样溶液、标样溶液的顺序进行测定。

4.4.5.4 计算

将测得的两针试样溶液以及试样前后两针标样溶液中的丙炔氟草胺峰面积分别进行平均,试样中丙 炔氟草胺质量分数按式(1)计算:

$$\omega_1 = \frac{A_2 \times m_1 \times \omega}{A_1 \times m_2} \dots (1)$$

式中:

 ω_1 ——试样中丙炔氟草胺的质量分数,数值以%表示;

A2——试样溶液中丙炔氟草胺峰面积的平均值;

 m_1 ——标样的质量,单位为克(g);

 ω ——标样中丙炔氟草胺的质量分数,数值以%表示;

 A_1 ——标样溶液中丙炔氟草胺峰面积的平均值;

m₂——试样的质量,单位为克(g)。

4.4.6 允许差

丙炔氟草胺质量分数两次平行测定结果之差应不大于1.2%,取其算术平均值作为测定结果。

4.5 水分的测定

按 GB/T 1600-2001 中 2.1 进行。

4.6 pH 值的测定

按 GB/T 1601 进行。

4.7 二氯甲烷不溶物的测定

4.7.1 仪器与试剂

电子天平。

标准具塞磨口锥形烧瓶: 250 mL。

回流冷凝器。

玻璃砂芯坩埚漏斗 G3 型。

锥形抽滤瓶: 500 mL。

烘箱。

加热套。

玻璃干燥器。

二氯甲烷。

4.7.2 测定步骤

将玻璃砂芯坩埚漏斗烘干(110 ℃约 1 h)至恒重(精确至 0.000 1 g),放入干燥器中冷却待用。称取 10 g(精确至 0.000 1 g)试样,放入 250 mL 锥形瓶中,加入 150 mL 二氯甲烷并振摇,尽量使试样溶解。然后装上回流冷凝器,在加热套中加热至沸腾,自沸腾开始 5 min 后停止加热。装配砂芯坩埚漏斗抽滤装置,在减压条件下尽快使热溶液快速通过漏斗。用 60 mL 热二氯甲烷分三次洗涤,抽干后取下玻璃砂芯坩埚漏斗,将坩埚置于 110 ℃±2 ℃的烘箱中干燥至恒重,取出放入干燥器中,冷至后称重(精确至 0.000 1 g)。

4.7.3 计算

被试物中二氯甲烷不溶物的质量分数按下式(2)计算:

$$\omega_2 = \frac{m_1 - m_0}{m} \times 100\% \dots (2)$$

式中:

- ω_2 ——试样中二氯甲烷不溶物的质量分数,以%表示;
- m_1 ——玻璃坩埚漏斗与不溶物恒重后的质量,单位为克 (g);
- m₀——玻璃坩埚漏斗恒重后的质量,单位为克 (g);
- *m*——试样的质量,单位为克(g)。

5 验收和质量保证期

5.1 验收

应符合 GB/T 1604 的规定。

5.2 质量保证期

在规定的储运条件下,丙炔氟草胺原药的质量保证期,从生产日期算起为2年。质量保证期内,各项指标均应符合标准要求。

6 标志、标签、包装、储运

6.1 标志、标签和包装

丙炔氟草胺原药的标志、标签和包装,应符合 GB 3796 的规定。

丙炔氟草胺原药用内衬塑料袋的编织袋或纸板桶包装,每袋(桶)净含量 40 kg,也可以根据用户要求和订货协议采用其它形式的包装。但要符合 GB 3796 中的有关规定。

6.2 储运

丙炔氟草胺原药包装件应储存在通风、干燥的库房中。储运时,严防潮湿和日晒,不得与食物、种子、饲料混放,避免与皮肤、眼睛接触,防止由口、鼻吸入。

附 录 A (资料性附录)

丙炔氟草胺的其他名称、结构式和基本物化参数

本产品有效成分丙炔氟草胺的其他名称、结构式和基本物化参数如下。

ISO 通用名称: Flumioxazin

CAS 登录号: 103361-09-7

CIPAC 数字代码: 578

化学名称: N-(7-氟-3,4-二氢-3-氧代-4-丙炔-2-基-2H-1,4-苯并噁嗪-6-基)环己烯-1-基-1,2-二甲酰胺结构式:

实验式: C₁₉H₁₅FN₂O₄

相对分子质量: 354.3

生物活性: 除草

熔点: 202 ℃~204 ℃

蒸气压 (22 ℃): 0.32 mPa

溶解度 (g/L, 20~25°C): 水0.786 mg/L, 甲醇1.6, 丙酮17, 乙腈32.3, 乙酸乙酯17.8, 二氯甲烷191, 正己烷0.025, 正辛醇0.16

稳定性: 水解 DT50 3.4 d (pH5)、1 d (pH7)、0.01 d (pH9), 在一般储存条件下稳定

7